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LETTER TO THE EDITOR 

A self-consistent description of ruptures in an elastic medium: 
an application to earthquakes 
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t DeF”ent  of Physics. The Ohio State University, Columbus. OH 43210, USA 
t Depamnenf of Physics, National University of Singapore, Sinsapore 0511 

Received 5 January 1994 

Abstract. We present a general self-consisteat procedure using latiice Green’s funaions to 
find the stress redistribution due to multiple ~ptures in a discrete elastic medium We use this 
method to study a dipole version of the quasi-static crack-propagation model for arthquakes 
proposed by Chen et al. Unlike the earlier ” i t  we do not assume that ~phlres occur 
independently. We obtain the m e s  selfconsistently and this changes the scaling behaviours 
of the hequency-size (seismic moment energy) distribution. We nuke a careful “padson of 
our mull8 with meat analysis of seismological data. 

Earthquakes typically arise from faulting instabilities in the earth‘s crust which occur 
suddenly and release the stress accumulated due to slow movement of the tectonic plates. 
The instabilities iuclude brittle fracture of rocks and slips along fractured surfaces which 
result in rich and complex dynamics. Of particular interest are the self-similar behaviours 
exhibited by earthquakes: the best known example is the Gutenberg-Richter law [2] which 
states that the number of earthquakes with energy greater than E, n(E), follows a power law: 
n(E)  c( E-B (see later for a detailed discussion). Recently, in the context of ‘self-organized 
criticality’ [3], several models that capture some of the self-similar features of earthquakes 
have been studied [1,5-101. One class of models, originally suggested by Burridge and 
Knopoff [4], deals with the stick-slip behaviour at the faults [6-91; while successful in 
elucidating some features of earthquakes, such models do not include the long-rauged stress 
redistribution that occurs following a slip event. We focus on a different class of quari-static 
models that describe the entire seismic zone as an elastic medium and include some of the 
long-ranged sms redistribution but neglect short-time dynamics. 

We model the seismic zone as a discretized elastic medium (a lattice of blocks) subjected 
to an extemally imposed shear stress. Each block is randomly assigned a threshold sh’ess 
which sets the maximum stress beyond which it will rupture. As the external stress increases 
blocks rupture initiating an earthquake that corresponds to a sequence of ruptures. Mer 
the earthquake the ruptures are assumed to heal, the process is repeated and statistics of 
earthquake properties can then be studied. Models in this class have been considered 
previously: the dipole model [I] in which forces in only one direction are included and a 
double-couple model 1101 in which complete force and torque balance are imposed. The 
latter model amounts to a discretized version of the equations of continuum elasticity. For 
simplicity these SNdieS h’eated each rupture independently of the other ruptures and did not 
constrain the stress across a rupture to be zero during the earthquake. We incorporate this 
essential feature in computing the stress redistribution during the earthquake. 
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The main results of our work are as follows: (i) We have developed a general self- 
consistent procedure using lattice Green's functions to find the stress redistributions due to 
multiple ruptures. (U) We illuslrate the method by studying the dipole model numerically in 
2 and 3 dimensions. We find that the self-consistent solution leads to new scaling behaviour 
for the frequency-size (seismic momenf energy) distributions of earthquakes different from 
that of the Chen, Bak, Obukhov model [I]. We finally review crossover effects f+om small 
to large earthquakes in seismological data [15] and show that ow results for B are consistent 
with the data. 

Dipole nwdel. We model the seismic zone as a lattice of blocks subjected to a slowly 
increasing extemal shear stress in the xy plane along x where z is chosen along the vertical. 
Equilibrium elasticity conditions are imposed on the stresses defined at the centres of the 
blocks. In the XI model the width of the crust (along z )  is neglected. We restria our 
attention to the shear mode of fracture and consider only shear ruptures along x in XI 
and x z  planes in 3D. Each block is randomly assigned a threshold stress between 0 and 
1 which sets the maximum shear stress the block can sustain and beyond which it will 
rupture. We only consider forces along x and denote the (compressional) stress at the 
centre of a block T by U&-) = uZ&) and the shear stresses, e.g. in the x y  plane by 
uY(7) E uzy(r). In the quasi-static approximation, the vanishing of the net force on each 
block implies that the stresses satisfy xi Diui = 0; the discrete lattice gmdient Di is defined 
by D i f ( ~ )  [ f ( r  +&/2) - f ( ~  - &/2)], where .?j is the unit vector along i = x, y, or z .  

The slow increase of the extemal shear stress is rralized by addiig a small stress to all 
U? until a block ruptures. This results in a long-ranged redistribution of the elastic forces 
that decay as t/rd with the distance r from the rupture. The resulting stnss configuration 
in turn could trigger more blocks to rupture causing an avalanche in the system which we 
define as an earthquake. The stress redistribution can be considered instantaneous since 
it occurs with the speed of sound, much faster than the geological timescales involved in 
the build-up of stress. Therefore, we hold the external stress fixed during an earthquake. 
When the stresses in all the (umuptured) blocks are below their corresponding thresbolds, 
the earthquake ends. After the earthquake, a l l  the thresholds of the fractured surfaces are 
=set to a random number between 0 and 1 signifying healing of the fractured blocks before 
the start of the next earthquake. 

Self-consistent method. Below we briefiy describe the basic formalism for the XI dipole 
model; genedizations to the doublecouple model and to 3D are straightforward. Consider 
a single rupture of a block at TO. The comspondmg shear stress U, decreases from its value 
uo to zero resulting in a force imbalance and subsequent stress redistribution. The stless 
distributions before and after the rupture u$'(r) and uiF'"(T) differ by ui the additional 
stress due to the rupture for i = x ,  y: 

U;@) = ui-(T) - Uf'd(T). (1) 

Since, uiW also satisfies force-balance, it follows that Diu; = 0. Note that U' is 
linearly related to the additional displacement U' via Hooke's law throughout the system 
except at the ruptured surface. It is convenient to separate out this violation of Hooke's law 
at the ~ p h l r e d  block 

6 



Letter to the Editor L157 

In the preceding U$ is the elastic part of the stress and erne represents the non-elastic part of 
the stress drop proportional to the ‘slip’ at the ruptured surface. It follows that U$’ satisfies 

<3) 

Diu:(~-) + FfP”(r) = 0, where the dipole force is given by 

FfP”(T) = fY (&,m-qz - &,m+y2) 

and f,. = une. If one considers the full force and torque balance conditions [lo], not just 
along x ,  one obtains an effective doublecouple instead of a dipole. To solve for U*, we 
need Hooke’s law relating ud to the additional elastic displacement due to the ruptures. We 
assume the following form of Hooke’s law: U$ = DXu: and = Dyuk where U: is the 
displacement along x (the same assumptions are made in the model [l]). This permits 
us to determine u:yt. The result for U? (this is sufficient since we consider shear fractures 
only) is 

c$’(T) = - f y G y ( ~  -PO) (4) 

where the lattice Green’s function Cy is given by 

e’”r(l - cos k,.) 
2 - (COS k, +cos ky) ’ Gy(r) = 2 Jk jk a, ay 

(W2 0 0 
(5) 

The condition that the stress at the ~ p t ~ t e d  surface. is zero determines the ‘magnitude’ of 
the dipole force fu : fu = -2q .  

Now we consider the stress redistribution due to many ruptures simultaneously. In 
analogy with the single rupture case, the additional stress caused by the many ruptures can 
be viewed as being due to dipole forces at each of the NPW blocks. Suppose there are 
ny ruptured blocks at  TO^, i = 1, . . . , n,.}; the elastic part of the extra stress due to these 
ruptures can be expressed as (cf (4)) 

n., 

The magnitude of the dipole forces can be obtained self-consistently by solving a set of 
linear equations corresponding to the boundary conditions of zero stcess at the ruptured 
surfaces: 

uy-(roi) = u;YToi) + u;f(Toi) + A y  = 0 CI) 
for i = 1, . . . , ny. The new stress distribution can then be obtained from the dipole forces 
My) by using (1) and, (6). 

ResuZtsfor the dipole model. As the stress is increased, earthquakes occur and the ruptures 
are healed, the system evolves to a critical state. We characterize each earthquake by 
quantities analogous to the enera release E and seismic moment magnitude MO for real 
earthquakes. Since, the dipole force Ay is the body force equivalent [ll] of the slip across 
the broken block i, it is a measure of the local slip. The stress drop at a broken block 

t We ~ s s u m e  that lhe redisMbution of e M c  forces OCCUIS over au infite medium and solve the equations for 
an infinite system. Far our fuiite system this eonesponds m an open boundary mndition with the activity outride 
the system being neglected. 
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is simply u0ld since unew = 0. The energy released in an earthquake E is taken to be 
the elastic work done by the stress drop to create a mean slip integrated over the seismic 
zone [12], and therefore, we define E = -x i  fi . a"d(i) where the sum is over all the 
ruptured blocks. Similarly, since the magnitude of the seismic moment in the xy plane is 
proportional to the total mean slip along x ,  we define MO M I xi fiyl where the sum is 
over all the broken blocks. We also monitor the number N of the broken blocks during an 
earthquake. 

We display in figure 1 typical spatial patterns (broken block configurations) of large 
earthquakes that occur in 2D and 3D. The pattem of a 2D eaahquake (figure l(u)) is that of 
a linear crack with some scatter due to the rupture of weak spots caused by long-ranged 
interactions. For 3D, the ruptures are confined to adjacent xz planes with some scatter as 
shown in figure I(b) and have the form of a planar crack. A more quantitative analysis can 
be made as follows: We can characterize ZD earthquakes by a length L defined as the root 
mean square deviation of the x coordinates of the ruptured blocks. Our data are. consistent 
with the scaling of the energy E = L2 (see below). Note that for a linear crack of size L 
we expect the surface 'area' of broken surfaces and the mean displacement in the ruptured 
blocks to scale as L leading to E cx Lz. We compute numerically the energy release due 
to the creation of a linear crack of length L and verify this scaling for L > 10. Thus 2D 
earthquakes in our model correspond to a 'macroscopic' linear ~ p h l r e .  

Next we discuss the distributions of the energy release ( E )  in both 2D and 3D. The 
results are obtained using a system of sue 80 x 80 at d = 2 and 20 x 20 x 20 at d = 3 
for 1OOooO earthquakes after skipping the first 20000 earthquakes to evolve the system to 
a critical state. In figure 2 we show a log-log plot of the distribution P ( E )  versus E ;  the 
linear portion which extends up to &L) corresponds to a power law P ( E )  = with 
B = 0.8 f 0.1 for 2D and E = 1.0 zk 0.1 for 3D. In contrast, the CBO model [l] yields 
B = 0.35 for 2D and B = 0.6 for 3D. Note that the value for E in 3D is in agreement with 
the mean field exponent derived in [51 using a model with gapdynamics. Beyond k? the 
distribution has a hump which is afmite-size effect. We 6nd that .@ increases with L and 
consequently the probability in the hump scales to zero with increasing L. Such humps 
also occur in the distributions of other quantities. 

The distribution for the seismic moment MO (not shown here) scales similarly with 
the same exponents as that of the energy. This is expected since the average slip due to 
rupturequpture interactions is proportional to the linear size of the macroscopic ~ p h l r e .  
However, the distribution P ( N )  for the number of fractured blocks N follows a different 
power law as shown in figure 3. We find P ( N )  a N-l-Bl,  with BI = 1.1 f 0.1 in 2D 
and B1 = 1.3 i 0.1 for 3D modelst. Thus the self-consistency of the stress redistribution 
leads to B # B1 in contrast to the mo model [l] for which E and N have identical scaling 
behaviours. 

We now compare our results with seismological data and discuss crossover effects. The 
original form of the Gutenberg-Richter law states that the rate of earthquakes with (surface 
wave) magnitude larger than Ms, n(M,) scales as loglO[n(Ms)] = A-bM, with an exponent 
b. In terms of the total energy release E ,  the rate of eaahquakes with energy larger than 
E ,  n ( E ) ,  scales as n(E)  = UE-' with an exponent B .  It is generally accepted that Ms is 
proportional to the logarithm of E :  loglo(E) = d + CM,; this yields b = cB. 

t We also find that modifications of OUT model such as (i) the inclusion of non-shear mode of ~pnues  due to 
the tensile stress c ,  exceeding iu threshold in d = 2 and (i) ch&ng the threshold distribution to be uniform 
between po and 1 with po = 0.1,0.2, leave the expanents B, B1 invariant while changing non-oniversai features 
such as the shape of the hump. 

. 
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Figure 1. Spatial pattems of typical large earthquakes in 2~ and U) for the dipole model. (U) 
The  angles represent the mptured blocks in a zn earthquake m a 80 x 80 system. (b) The 
NphlRd blocks in two adjacent layers (x-z planes) of the JD system are shown (in this patticdar 
mihquake, only blocks in these two layers rupture). The triangles and open drcles denote the 
locationsoftheNp~dbloclc;inx-rplanesaty = 16andy = 17respectivdyina20~20~20 
system. 

There are two possible reasons for a crossover in the scaling behaviours from large to 
small earthquakes: (i) M. calculated from seismic-wave amplitudes at a period of 20 seconds 
underestimates the energy of large earthquakes of longer duration. Recent analysis of data 
[13] indicates a crossover from c a 3/2 for Ms > 6.8 to c a 1 for Ms < 5.3 in agreement 
with earlier theoretical analysis [14]. (ii) The second reason is geometrical. While the 
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Figure 2 Log-log plot ofthe pmbabiily distribution of lhe energy release P ( E )  "ems e: (a) 
for the 20 model (straight Line has a slope % 1.8); (b) for the 3~ model (straight line has a slope 
n 2.0). 

extent of small earthquaka is not constrained the down-dip width of a large earthquake is 
liited by the thichess of the seismogenic layer. Therefore, large wthquakes correspond 
to d = 2 and small ones to d = 3. Recent analysis of the frequency-size relation [15] 
reveals a break in the self-similar behaviour at a magnitude around 6.5 to 7.5 due to the 
change in effective dimensionality. This leads to a change in b from roughly 1 for small 
earthquakes to 3/2 for large ones. 

It is reasonable to view earthquakes with Ms between 2.0 and 5.5, as 3D earthquakes, 
and hence, use c % 1 and deduce a value of B % 1. The situation for determining B for 
ZD earthquakes, on the other hand, is far less clear due to the two crossovers involved. If 
we assume that earthquakes with Ms =- 7.5 are two-dimensional and use c % 3/2, we again 
obtain B = 1. With these caveats, the B values obtained for ow model in d = 2 and 3 are 
in rough agreement with the above B values for large and small earthquakes respectively. 

We conclude by pointing out that the self-consistent method proposed here can be used 
to study ruptures in the more realistic double couple model [16] and also models that include 
preexisting fault skuchire. 
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F i  3. Log-log plot of the probabiliry distribution of the number of broken blacks P(N) 
versus N: (a) for the 20 model (swim line has a slope i-J 2.1); (b) for the 3D model (straight 
line has a slope i - ~  2.3). 
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